Прикладное глубокое обучение. Подход к пониманию глубоких нейронных сетей на основе метода кейсов

Затронуты расширенные темы глубокого обучения: оптимизационные алгоритмы, настройка гиперпараметров, отсев и анализ ошибок, стратегии решения типичных задач во время тренировки глубоких нейронных сетей.

ПРИСОЕДИНЯЙТЕСЬ 453 Просмотры

1. Книга в формате pdf

Image
Автор: Умберто Микелуччи
Год: 2020
Издательство: БХВ-Петербург
Язык: Русский
Страниц: 368

Описаны простые активационные функции с единственным нейроном сигмоида и линейная и логистическая регрессии, библиотека выбор стоимостной (ReLu, TensorFow, Swish), функции, а также более сложные нейросетевые архитектуры с многочисленными слоями и нейронами.

Показана отладка и оптимизация расширенных методов отсе­ва и регуляризации, настройка проектов машинного обучения, ориентированных на глубокое обучение с использованием сложных наборов данных.

Приведены результаты анализа ошибок нейронной сети с примерами решения проблем, возникающих из-за дисперсии, смещения, переподгонки или разрозненных наборов дан­ных.

По каждому техническому решению даны примеры решения практических задач.

 

Скачать книгу можно бесплатно по данной ссылке: Скачать


Ваша реакция?

0
LOL
1
LOVED
0
PURE
0
AW
0
FUNNY
0
BAD!
0
EEW
0
OMG!
0
ANGRY
0 Комментарии

  • Прикладное глубокое обучение. Подход к пониманию глубоких нейронных сетей на основе метода кейсов
  • Владимир Петров
Pola Pamungkas Mahjong Ways Ala Master Jarwo Pola Scatter Mahjong Super Hoki Pola Terbaik Gates Of Gatotkaca Racikan Jurus Terbaru Gatotkaca Strategi Cerdas Scatter Isi Daging Racikan Kemenangan Ratusan Juta Princess Rahasia Keberhasilan Bermain Princess Rahasia Strategi Berteknologi Canggih Strategi Main Modal Receh Game Olympus Strategi Mutakhir JP Ganda Princess